

C. U. SHAH UNIVERSITY

FACULTY OF SCIENCES DEPARTMENT OF LIFE SCIENCES

COURSE: B.Sc. SEMESTER: VI SUBJECT NAME: Medical Microbiology (Theory) SUBJECT CODE: 4SC06MEM1 Teaching & Evaluation Scheme:-

		\mathbf{U}											
Tea	ching	hour	s/week	Credit	Evaluation Scheme/semester								
					Theory				Pra	ctical			
Th	Tu	Pr	Total		Sessio Exai		Univer Exai		Internal		University	Total Marks	
					Marks Hrs Marks Hrs Pr		TW						
4	2	0	4	5	30	1	70	3	-	-		100	

Objectives:- The objective of this course is that the students can learn about basics of Medical Microbiology

Prerequisites:- Basic knowledge of Biological Sciences.

Course outline:-

Sr.	Course Contents	Hours							
No.									
1	Normal microflora of the human body and host pathogen	08							
	interaction: Normal microflora of the human body: Importance of								
	normal microflora, normal microflora of skin, throat, gastrointestinal								
	tract, urogenital tract								
	Host pathogen interaction: Definitions - Infection, Invasion, Pathogen,								
	Pathogenicity, Virulence, Toxigenicity, Carriers and their types,								
	Opportunistic infections, Nosocomial infections. Transmission of								
	infection, Pathophysiologic effects of LPS								
2	Sample collection, transport and diagnosis:	05							
	Collection, transport and culturing of clinical samples, principles of								
	different diagnostic tests (ELISA, Immunofluorescence, Agglutination								
	based tests,Complement fixation, PCR, DNA probes).								
3	Bacterial diseases:	15							
	List of diseases of various organ systems and their causative agents.								
	The following diseases in detail with Symptoms, mode of transmission,								
	prophylaxis and control								
	Respiratory Diseases: Streptococcus pyogenes, Haemophilus influenzae,								
	Mycobacterium tuberculosis Gastrointestinal Diseases: Escherichia coli,								
	Salmonella typhi, Vibrio cholerae, Helicobacter pylori Others:								
	Staphylococcus aureus, Bacillus anthracis, Clostridium tetani, Treponema								
	pallidum, Clostridium difficie								

C. U. SHAH UNIVERSITY

14
05
06
08

Learning Outcomes:- The students are expected to

- Identification of various disesases and their symptoms.
- Mechanism of antimicrobial agents.

Books Recommended:-

1. Ananthanarayan R. and Paniker C.K.J. (2009) Textbook of Microbiology. 8th edition, University Press Publication

2. Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A. (2013) Jawetz, Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication

3. Goering R., Dockrell H., Zuckerman M. and Wakelin D. (2007) Mims' Medical Microbiology. 4th edition. Elsevier

4. Willey JM, Sherwood LM, and Woolverton CJ. (2013) Prescott, Harley and Klein's Microbiology.9th edition. McGraw Hill Higher Education

5. Madigan MT, Martinko JM, Dunlap PV and Clark DP. (2014). Brock Biology of Microorganisms.14th edition. Pearson International Edition

Sr. No.	Course Contents
1	Identify bacteria (any three of E. coli, Salmonella, Pseudomonas,
	Staphylococcus, Bacillus) using laboratory strains on the basis of cultural,
	morphological and biochemical characteristics: IMViC, TSI, nitrate
	reduction, urease production and catalase tests
2	Study of composition and use of important differential media for
	identification of bacteria: EMB Agar, McConkey agar, Mannitol salt agar,
	Deoxycholate citrate agar, TCBS
3	Study of bacterial flora of skin by swab method
4	Perform antibacterial sensitivity by Kirby-Bauer method
5	Determination of minimal inhibitory concentration (MIC) of an antibiotic.
6	Study symptoms of the diseases with the help of photographs: Polio, anthrax,
	herpes, chicken pox, HPV warts, AIDS (candidiasis), dermatomycoses (ring
	worms)
7	Study of various stages of malarial parasite in RBCs using permanent
	mounts.

COURSE: B.Sc. SEMESTER: VI SUBJECT NAME: Recombinant DNA Technology (Theory) SUBJECT CODE: 4SC06RDT1 Teaching & Evaluation Scheme:-

Tea	nching	hour	s/week	Credit	Evaluation Scheme/semester							
						Theory			Practical			
Th	Tu	Pr	Total		Sessio Exai		Univer Exai	·	Internal		University	Total Marks
					Marks Hrs Marks Hrs		Pr	TW				
4	0	4	8	6	30	1	70	3	30	-	70	200

Objectives:- The objective of this course is that the students can learn about basics of r-DNA technology.

Prerequisites:- Basic knowledge of Biological Sciences and genetic material.

Course outline:-

	Comme Contents	TT
Sr.	Course Contents	Hours
No.		
1	Introduction to Genetic Engineering:	•
	Milestones in genetic engineering and biotechnology.	2
2	Molecular Cloning- Tools and Strategies :	
	Cloning Tools; Restriction modification systems: Types I, II and III. Mode of	
	action, nomenclature, applications of Type II restriction enzymes in genetic engineering	
	DNA modifying enzymes and their applications: DNA polymerases.	
	Terminal deoxynucleotidyl transferase, kinases and phosphatases, and DNA	20
	ligases	20
	Cloning Vectors: Definition and Properties Plasmid vectors: pBR and pUC	
	series Bacteriophage lambda and M13 based vectors Cosmids, BACs, YACs Use of linkers and adaptors	
	Expression vectors: <i>E.coli</i> lac and T7 promoter-based vectors, yeast YIp,	
	YEp and YCp vectors, Baculovirus based vectors, mammalian SV40-based	
	expression vectors	
3	Methods in Molecular Cloning:	
	Transformation of DNA: Chemical method, Electroporation,	
	Gene delivery: Microinjection, electroporation, biolistic method (gene gun),	
	liposome and viral- mediated delivery, Agrobacterium - mediated delivery	16
	DNA, RNA and Protein analysis: Agarose gel electrophoresis, Southern -	
	and Northern - blotting techniques, dot blot, DNA microarray analysis, SDS-	
	PAGE and Western blotting.	
4	DNA Amplification and DNA sequencing:	
	PCR: Basics of PCR, RT-PCR, Real-Time PCR	10
	Sanger's method of DNA Sequencing: traditional and automated sequencing	10
	Primer walking and shotgun sequencing	

<u>C. U. SHAH UNI</u>VERSITY

5	Construction and Screening of Genomic and cDNA libraries:	
	Genomic and cDNA libraries: Preparation and uses, Screening of libraries: Colony	6
	hybridization and colony PCR, Chromosome walking and chromosome jumping	
6	Applications of Recombinant DNA Technology:	
	Products of recombinant DNA technology: Products of human therapeutic interest -	
	insulin, hGH, antisense molecules. Bt transgenic - cotton, brinjal, Gene therapy,	6
	recombinant vaccines, protein engineering and site directed mutagensis	
	Total Hours	60

Learning Outcomes:- The students are expected to

- Handeling the molecular tools and genomic library.
- r-DNA application in transgenic mechanism.

Books Recommended:-

- 1. **Brown TA.** (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 2. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA
- 3. **Primrose SB and Twyman RM**. (2006). Principles of Gene Manipulation and Genomics, 7th edition. Blackwell Publishing, Oxford, U.K.
- 4. **Sambrook J and Russell D**. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press
- 5. Wiley JM, Sherwood LM and Woolverton CJ. (2008). Prescott, Harley and Klein's Microbiology. McGraw Hill Higher Education
- 6. Brown TA. (2007). Genomes-3. Garland Science Publishers
- 7. **Primrose SB and Twyman RM**. (2008). Genomics: Applications in human biology. Blackwell Publishing, Oxford, U.K.

Sr. No.	Course Contents
1	Preparation of competent cells for transformation
2	Demonstration of Bacterial Transformation and calculation of transformation efficiency.
3	Digestion of DNA using restriction enzymes and analysis by agarose gel electrophoresis
4	Ligation of DNA fragments
5	Cloning of DNA insert and Blue white screening of recombinants.
6	Interpretation of sequencing gel electropherograms
7	Designing of primers for DNA amplification
8	Amplification of DNA by PCR
9	Demonstration of Southern blotting

COURSE: B.Sc.

SEMESTER: VI (All Sciences)

SUBJECT NAME: Professional Etiquettes-II SUBJECT CODE: 4SC06PRE2 Teaching & Evaluation Scheme:-

Tea	ching	hour	s/week	Credit			ster					
					Theory							
Th	Tu	Pr	Total		Sessional University Internal Un		University	Total Marks				
					Marks Hrs Marks Hrs Pr TW							
2	2	0	4	3	30	1	70	3	-	-	-	100

Objectives:

- To define before the students professional behavior and suggest standards forappearance, actions, and attitude in a business environment.
- To explain them different communication styles and how to adjust to each.
- Review the essentials of online and offline business networking.
- Develop an action plan to improve personal professionalism.

Prerequisites:

- Students should have basic knowledge of English Language and grammar.
- Students should have ability to speak and write correct sentences in their day to day language.
- Students should be familiar with correct usage of language.

Course outline:-

Unit	Content In Details Including Its Sub Topics	Minim	Minimum Number of Hours				
No.	Section: A: Career Advancement Program 2	Theory	Practical	Total			
01	Positive Attitude Introduction Importance of positive attitude Ways to develop positive attitude External and internal factors in bulging positive attitude	03	02	05			
02	Self Esteem Definition Theory of Maslow Advantages of High Self Esteem Causes of Low Self Esteem How to Improve Self Esteem	03	03	06			
03	Leadership Who is Leader? Characteristics of Leader Types of Leader Importance of Leadership in Professional life Case study of established leaders.	04	04	08			

C. U. SHAH UNIVERSITY

04	Soft SkillsIntroduction to soft skillsImportance of soft skillsIntelligence quotient, Emotional quotient, Spiritual quotientClassification of soft skills:Thinking Skills: Self Awareness, Problem-Solving, DecisionMaking, Critical Thinking, Creative ThinkingSocial Skills: Interpersonal Relationships, EffectiveCommunication, EmpathyEmotional Skills:Managing Feelings/emotions, StressManagement	05	05	10
05	Goal Setting Introduction Importance 5 D's of Goal Setting: Direction, Dedication, Determination, Discipline, Deadline Steps of Goal Action Plan	04	04	08
06	Notice, Agendas of Meeting, Minutes of Meeting Preparing notice Preparing a list of agendas for meeting Drafting minutes of conducted meeting	03	02	05
07	Section-B: Literature La Belle Dame Sans Merci – John Keats Byzantium – W. B. Yeats	08	10	18

Learning Outcomes:- The students are expected to

• Prepare participants to handle a variety of social and business situations: networking events, business meetings, business meals, and manymore.

Books Recommended:-

- 1. Personality Development and Soft Skills, Mitra Barun, Oxford University Press.
- 2. Managing Soft Skills for Personality Development, B.N. Ghosh, Tata McGraw-Hill.
- 3. You Can Win, Shiv Khera.
- 4. The Monk Who Sold His Ferrari, Robin Sharma, Harper Collins.
- 5. *Effective Personal Communication Skills for Public Relations*, Green Andy, Kogan age Limited.
- 6. William Butler Yeats: The Byzantium Poems, The Merrill literary casebook series, Ed. Richard J. Finneran, Merrill Publishing Company, Chicago.
- 7. JOHN KEATS: Selected Poems, Edited and with an Introduction and Notes, John Barnard, Penguin Books New Delhi.
- 8. Selected College Poems, Ambika Sengupta, Orient Longman Private Limited, New Delhi.

COURSE: B.Sc. SEMESTER: VI SUBJECT NAME: DSE III (INSTRUMENTATION AND BIOTECHNIQUES) SUBJECT CODE: 4SC06IAB1 Teaching & Evaluation Scheme:-

Tea	aching	hour	s/week	Credit	Evaluation Scheme/semester							
					Theory				Pra			
Th	Tu	Pr	Total			Sessional University Exam Exam Internal		University	Total Marks			
					Marks Hrs Marks Hrs		Pr	TW				
4	0	4	8	6	30	1	70	3	30	I	70	200

Objectives:- The objective of this course is that the students can learn about basics of Instruments and biotechniques.

Prerequisites:- Basic knowledge of Biological Sciences.

Sr. No.	Course contents	Teaching
		Hours
1	Microscopy: Bright field and dark field microscopy, Fluorescence Microscopy, Phase contrast Microscopy, Confocal Microscopy, Electron Microscopy(Scanning and Transmission Electron Microscopy) and Micrometry.	10
2	Chromatography: Principles and applications of paper chromatography (including Descending and 2-D), Thin layer chromatography. Column packing and fraction collection. Gel filtration chromatography, ion-exchange chromatography and affinity chromatography, GLC,HPLC.	14
3	Electrophoresis:	14
	Principle and applications of native polyacrylamide gel electrophoresis, SDS- polyacrylamide gel electrophoresis, 2Dgelelectrophoresis, Isoelectric focusing, Zymo gram preparation and Agarose gel electrophoresis	
4	Spectro photometry:	10
	Principle and use of study of absorption spectra of biomolecules. Analysis of biomolecules using UV and visible range. Colorimetry and turbidometry.	
5	Centrifugation:	12
	Preparative and a n a lytical centrifugation, fixed angle and s winging bucket rotors.RCF and sedimentation coefficient, differential centrifugation,	

<u>C. U. SHAH UNIVERSITY</u>

	density gradient centrifugation and ultra centrifugation.	
	Total Hours	60

Learning Outcomes:- The students are expected to

• Handling the Instruments.

Books Recommended:-

- Wilson K and Walker J.(2010). Principles and Techniques of Biochemistry and Molecular Biology. 7thEd., Cambridge University Press.
- 2. Nelson DL and Cox MM. (2008). Lehninger Principles of Biochemistry, 5thEd., W.H. Freeman and Company.
- 3. Willey MJ, Sherwood LM &WoolvertonC J. (2013). Prescott, Harley and Klein's Microbiology.9thEd.,McGraw Hill.
- 4. Karp G.(2010) Cell and Molecular Biology: Concepts and Experiments. 6th edition. John Wiley & Sons. Inc.
- 5. **De Robertis EDP and DeRobertis EMF**. (2006). Cell and Molecular Biology. 8th edition. Lipincott Williams and Wilkins, Philadelphia.
- CooperG.M. and Hausman R.E.(2009). The Cell: A Molecular Approach.5thEdition. ASM Press & Sunderland, Washington D.C Sinauer Associates, MA.
- 7. Nigam A and AyyagariA.2007. Lab Manual in Biochemistry, Immunology and Biotechnology .Tata McGraw Hill.

Experiment
Study of fluorescent micrographs to visualize bacterial cells.
Ray diagrams of phase contrast microscopy and Electron microscopy.
Separation of mixtures by paper/thin layer chromatography.
Demonstration of column packing in any form of column chromatography.
Separation of protein mixtures by any form of chromatography
Separation of protein mixtures by Polyacrylamide Gel Electrophoresis (PAGE).
Determination of λ_{max} for anun known sample and calculation of extinction coefficient.
Separation of components of a given mixture using a laboratory scale centrifuge.
Understanding density gradient centrifugation with the help of pictures.

COURSE: B.Sc. SEMESTER: VI SUBJECT NAME: DSE III (ADVANCES IN MICROBIOLOGY) SUBJECT CODE: 4SC06AIM1 Teaching & Evaluation Scheme:-

Teaching hours/week Credit					Credit	Evaluation Scheme/semester							
						Theory Practical					ctical		
	Th	Tu	Pr	Total		Sessio Exar		Univer Exai	·	Internal		University	Total Marks
						Marks	Hrs	Marks	Hrs	Pr	TW		
	4	0	4	8	6	30	1	70	3	30	-	70	200

Objectives:- The objective of this course is that the students can learn about basics of Advance in microbiology.

Prerequisites:- Basic knowledge of Biological Sciences.

Sr.	Course contents	Teaching
No.		Hours
1	Evolution of Microbial Genomes:	15
	Salient features of sequenced microbial genomes, core genome pool, flexible	
	genome pool and concept of pan genome, Horizontal gene	
	transfer(HGT), Evolution of bacterial virulence-Genomic islands,	
	Pathogenicity islands(PAI)and their characteristics	
2	Meta genomics :	15
	Brief history and development of metagenomics, Understanding bacterial	
	diversity using meta genomics approach, Prospecting genes of	
	biotechnological importance using meta genomics	
	Basic knowledge of viral meta genome, meta transcriptomics, meta proteomics and meta bolomics.	
3	Molecular Basis of Host-Microbe Interactions:	15
3	Epiphytic fitness and its mechanism in plant pathogens, Hyper sensitive	15
	response(HR)to plant pathogens and its mechanism, Type three secretion	
	systems (TTSS) of plant and animal pathogens, Biofilms: types of	
	microorganisms, molecular aspects and significance in environment ,health	
	care, virulence and anti microbial resistance	
4	Systems and Synthetic Biology:	15
	Networking in biological systems, Quorum sensing in bacteria, Co-	
	ordinated regulation of bacterial virulence factors, Basics of synthesis of	
	polio virus in laboratory, Future implications of synthetic biology with	
	respect to bacteria and viruses	
	Total Hours	60

Learning Outcomes:- The students are expected to

• Understanding bacterial diversity using meta genomics approach.

Books Recommended:-

- 1. Fraser CM, Read TD and Nelson KE .Microbial Genomes,2004, Humana Press.
- 2. **Miller RV and Day MJ**. Microbial Evolution-Gene establishment, survival and exchange, 2004, ASM Press.
- 3. Bull AT. Microbial Diversity and Bioprospecting, 2004, ASM Press.
- 4. Sangdun C. Introduction to Systems Biology, 2007, Humana Press.

S.No	Experiment
1	Extraction of meta genomic DNA from soil
2	Understand the impediments in extracting meta genomic DNA from soil
3	PCR amplification of meta genomic DNA using universal 16s ribosomal gene primers
4	Case study to understand how the polio virus genome was synthesized in the laboratory
5	Case study to understand how networking of metabolic path ways in bacteria takes place

COURSE: B.Sc. SEMESTER: VI SUBJECT NAME: DSE III (BIOSAFETYAND INTELLECTUAL PROPERTY RIGHTS) SUBJECT CODE: 4SC06BSI1 Teaching & Evaluation Scheme:-

Tea	ching	hour	s/week	Credit		Evaluation Scheme/semest					ster	
						The	ory			Pra	ctical	
Th	Tu	Pr	Total		Sessio Exai		Univer Exar	·	Internal		University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	4	8	6	30	1	70	3	30	-	70	200

Objectives:- The objective of this course is that the students can learn about basics of Biosafety and IPR.

Prerequisites: - Basic knowledge of Biological Sciences.

Sr.	Course contents	Teaching
No.		Hours
1	Bio safety: Introduction; bio Safety Issues In biotechnology; Biological	8
	Safety Cabinets & their types; Primary Containment for Biohazards; Bio	
	safety Levels of Specific Microorganisms	
2	Bio safety Guidelines: Bio safety guidelines and regulations(National and	12
	International); GMOs-Concerns and Challenges; Role of Institutional Bio	
	safety Committees(IBSC),RCGM, GEAC etc. for GMO applications in food	
	and agriculture; Environmental release of GMOs; Risk Analysis; Risk	
	Assessment; Risk management and communication; Overview of	
	International Agreements-Cartagena Protocol.	
3	AERB/RSD/RES guidelines for using radio isotopes in laboratories and	4
	precautions.	_
4	Introduction to Intellectual Property: Patents, Types, Trademarks,	12
	Copyright & Related Rights, Industrial Design and Rights, Traditional	
	Knowledge, Geographical Indications-importance of IPR- patentable and	
	non patentablepatenting life-lega lprotection of biotechnological	
	linventions– World Intellectual Property Rights Organization(WIPO).	
5	Grant of Patent and Patenting Authorities: Types of patent applications:	12
	Ordinary, PCT, Conventional, Divisional and Patent of Addition; An	
	introduction to Patent Filing Procedures; Patent licensing and agreement;	
	Patent infringement meaning, scope, litigation, case studies, Rights and	
	Duties of patent owner.	
6	Agreements and Treaties: GATT, TRIPS Agreements; Role of Madrid	12

Agreement; Hague Agreement; WIPO Treaties; Budapest Treaty on									
international recognition of the deposit of microorganisms; UPOV & Brene									
conventions; Patent Co-operation Treaty(PCT); Indian Patent Act1970 &									
recent amendments.									
Total Hours	60								

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of IPR.

Books Recommended:

- 1. Bare Act,2007. Indian Patent Act 1970Acts & Rules, Universal Law Publishing Co. Pvt. Ltd., NewDelhi.
- 2. Kankanala C(2007). Genetic Patent Law & Strategy, 1stEdition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P.(1999).Indian Patents Law, Taxmann, Allied Services(p)Ltd.
- 4. Singh KK(2015).Biotechnology and Intelectual Property Rights: Legal and Social Implications, Springer India.
- 5. GoelD & Prashar S(2013). IPR , Bio safety and Bioethics. Pearson.
- 6. Senthil Kumar Sadha sivam and Mohammed Jaabir, M.S. 2008. IPR, Bio safety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

S.No	Experiment
1	Study of components and design of a BSL-IIIIaboratory
2	Filing applications for approval from bio safety committee
3	Filing primary applications for patents
4	Study of steps of a patenting process
5	A case study

COURSE: B.Sc. SEMESTER: VI SUBJECT NAME: DSE IV (PLANT PATHOLOGY) SUBJECT CODE: 4SC06PPY1 Teaching & Evaluation Scheme:-

Teaching hours/week Credit					Credit	Evaluation Scheme/semester							
							Theory Practical			ctical			
	Th	Tu	Pr	Total		Sessio Exai		Univer Exai		Internal		University	Total Marks
						Marks	Hrs	Marks	Hrs	Pr	TW		
	4	0	4	8	6	30	1	70	3	30	-	70	200

Objectives:- The objective of this course is that the students can learn about basics of Plant pathology.

Prerequisites: - Basic knowledge of Biological Sciences.

Sr.	Course contents										
No.		Hours									
1	Introduction and History of plant pathology:	12									
	Concept of plant disease-definitions of disease, disease cycle &										
	pathogenicity, symptoms associated with microbial plant diseases, types of										
	plant pathogens, economic losses and social impact of plant diseases.										
	Significant land marks in the field of plant pathology-Contributions of Anton										
	De Bary, Millardet, Burrill, E.Smith, Adolph Mayer, Ivanowski, Diener,										
	Stakman, H.H. Flor, VanDer Plank, molecular Koch's										
	postulates.Contributions of eminent Indian plant pathologists.										
2	Stages in development of a disease:	6									
-	Infection, invasion, colonization, dissemination of pathogens and	Ū									
	perennation.										
3	Plant disease epidemiology:	10									
5		10									
	Concepts of monocyclic, poly cyclic and polyetic diseases, disease triangle &										
	disease pyramid, forecasting of plant diseases and its relevance in Indian										
	context.	20									
4	Host Pathogen Interaction Microbial Pathogenicity: Virulence factors of	20									
	pathogens: enzymes, toxins(host specific and nonspecific)										
	Growth regulators, virulence factors in viruses (replicase, coat protein,										
	silencing suppressors) in disease development.										
	Effects of pathogens on host physiological processes (photosynthesis,										
	respiration, cell membrane mermeability, translocation of water and										
	nutrients, plant growth and reproduction).										
	Genetics of Plant Diseases: Concept of resistance(R)gene and a										

	C. U. SHAH UNIVERSITY	
	virulence(avr) gene; gene for gene hypothesis, types of plant resistance: true resistance–horizontal & vertical, apparent resistance.	
	<i>Defense Mechanisms in Plants:</i> Concepts of constitutive defense mechanisms in plants, inducible structural defenses (histological- corklayer, abscission layer, tyloses, gums), inducible biochemical defenses [hypersensitive response (HR),systemic acquired resistance(SAR),phyto alexins, pathogenesis related(PR)proteins, planti bodies, phenolics, quinones, oxidative bursts].	
5	Control of Plant Diseases: Principles & practices involved in the management of plant diseases by different methods, <i>viz</i> . regulatory quarantine, crop certification, avoidance of pathogen, use of pathogen free propagative material cultural-host eradication, crop rotation, sanitation, polyethylene traps and mulches chemical-protectants and systemic fungicides, antibiotics, resistance of pathogens to chemicals. Biological-suppressive soils, antagonistic microbes-bacteria and fungi, trapplants.	12
	Genetic engineering of disease resistant plants-with plant derived genes and pathogen derived genes Total Hours	60

STITUTEOFIL

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of Plant Pathology.

Books Recommended:

- 1. Agrios GN.(2006).Plant Pathology.5thedition.Academic press,SanDiego.
- 2. Lucas JA.(1998). Plant Pathology and Plant Pathogens. 3rd edition. Blackwell Science, Oxford.
- 3. Mehrotra RS.(1994).Plant Pathology. Tata McGraw-Hill Limited.
- 4. **Rangaswami G**.(2005).Diseases of Crop Plants in India. 4th edition. Prentice Hall of India Pvt. Ltd., NewDelhi.
- 5. Singh RS.(1998).Plant Diseases Management. 7th edition. Oxford & IBH, New Delhi

Experiment

Demonstration of Koch's postulates in fungal, bacterial and viral plant pathogens. Study of important diseases of crop plants by cutting sections of infected plant material-*Albugo, Puccinia,Ustilago,Fusarium,Colletotrichum*

COURSE: B.Sc. SEMESTER: VI SUBJECT NAME: DSE IV (MICROBES IN SUSTAINABLE AGRICULTURE AND DEVELOPMENT) SUBJECT CODE: 4SC06MAD1 Teaching & Evaluation Scheme:

Teaching & Evaluation Scheme:-

Teaching hours/week			Credit	Evaluation Scheme/semester								
						The	ory		Practical			
Th	Tu	Pr	Total		Sessional Exam		Univer Exai		Internal University		University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	4	8	6	30	1	70	3	30	-	70	200

Objectives:- The objective of this course is that the students can learn about basics of Microbes in sustainable agriculture and development.

Prerequisites:- Basic knowledge of Biological Sciences.

Sr.	Course contents	Teaching
No.		Hours
1	Soil Microbiology	8
	Soil as Microbial Habitat, Soil profile and properties, Soil formation,	
	Diversity and distribution of microorganisms in soil	
2	Mineralization of Organic & Inorganic Matter in Soil	8
	Mineralization of cellulose, hemicelluloses, lignocelluloses, lignin and	
	humus, phosphate, nitrate, silica, potassium	
3	Microbial Activity in Soil and Green House Gases	5
	Carbon dioxide, methane ,nitrous oxide ,nitric oxide-production and control	
4	Microbial Control of Soil Borne Plant Pathogens	8
	Bio control mechanisms and ways, Microorganisms used as bio control	
	agents against Microbial plant pathogens, Insects, Weeds	
5	Bio fertilization, Phytostimulation, Bioinsecticides	15
	Plant growth promoting bateria, biofertilizers symbiotic	
	(Bradyrhizobium, Rhizobium, Frankia), Non Symbiotic(Azospirillum,	
	Azotobacter, Mycorrhizae, MHBs, Phosphate solubilizers, algae), Novel	
	combination of microbes as biofertilizers, PGPRs	
6	Secondary Agriculture Biotechnology	16
	Biotech feed, Silage, Bio manure, bio gas, bio fuels-advantages and	
	processing parameters	
	GM crops	
	Advantages, social and environmental aspects, Bt crops, golden rice,	
	transgenic animals.	
	Total Hours	60

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of agriculture.

Books Recommended:

- 1. Agrios GN.(2006).Plant Pathology.5th edition. Academic press, San Diego.
- 2. Singh RS.(1998).Plant Diseases Management. 7th edition. Oxford & IBH, New Delhi.
- 3. GlickBR, PasternakJJ, and PattenCL (2010) Molecular Biotechnology 4thedition,ASM Press.
- 4. Atlas RM and Bartha R.(2000). Microbial Ecology: Fundamentals & Applications. 4thedition.Benjamin/Cummings Science Publishing,USA.
- 5. Maier RM, Pepper IL and Gerba CP. (2009). Environmental Microbiology. 2ndedition, Academic Press.
- 6. Barton LL & Northup DE(2011). Microbial Ecology. 1stedition, Wiley Blackwell,USA.
- 7. **Campbell RE.**(1983).Microbial Ecology. Blackwell Scientific Publication, Oxford, England.
- 8. **CoyneMS**.(2001).Soil Microbiology: An Exploratory Approach. Delmar Thomson Learning.
- 9. Altman A(1998). Agriculture Biotechnology, I st edition, Marcel decker Inc.
- 10. **MahendraK. Rai**(2005). Hand Book of Microbial Biofertilizers, The Haworth Press, Inc. New York.
- 11. **Reddy, S.M. et.al.**(2002).Bioinoculants for Sustainable Agriculture and Forestry, Scientific Publishers.
- 12. SaleemF and Shakoori AR(2012) Development of Bio insecticide, Lap Lambert Academic Publishing Gmb HKG

S.No	Experiment						
1	Study soil profile						
2	Study micro flora of different types of soils						
3	<i>Rhizobium</i> as soil inoculants characteristics and field application						
4	Azotobacter as soil inoculants characteristics and field application						
5	Design and functioning of a biogas plant						
6	Isolation of cellulose degrading organisms						